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ASYMPTOTIC FORMULA FOR THE NATURAL FREQUENCIES 
OF NONCIRCULAR CYLINDRICAL FLUID-FILLED SHELLS* 

E. A. DAIN 

An exact asymptotic formula is proved for the natural frequencies of noncircular 
cylindrical shells. It turns out that the spectrum dissociates asymptotically in- 
to four series corresponding to different kinds of state of stress, Natural fre- 
quency modes are written down in the form of rapidly oscillating functions 
corresponding to a quasi-transverse state of stress. 

1. A cylindrical shell of arbitrary outline with elastic flat bulkheads is considered, 
whose plane is orthogonal to cylinder generatrix. The vessel thus obtained is filledentirely 
with fluid. 

We assume that the velocity potential I.', on the bulkheads is zero, and simple support 
conditions are satisfied for the displacements U,U,W on the cylindrical shell boundary F (a 
is the generatrix arc length) 

(1.1) 

Then the problem of determining the natural frequencies of the combined oscillations of 
the mechanical system "cylinder side surface-fluid" results in the following system of equa- 
tions 
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The first four equations are satisfied on the cylinder side surface, and the last, the 
Helmholtz equation, within the vessel, where u,",ut,cp satisfy the conditions (1.1). The 
system (1.2) is written in conformity with the notation used in /l/; we just note that pf is 
the fluid density, pI the shell density, al&a is differentiation in the external normal 
direction, and I', is the cylinder side surface. 

Theorem 1. The spectrum of the problem (l.l), (1.2) is real, discrete, and has aunique 
fimitatinfinity. The eigennumbers 0 are symmetric relative to zero. 

PrOOf. The substitution 

= = Xl, y= 4, w = p* J%, q = pi V&(p, = )/E/Pf) 

sets the system (1.2) in a quadratic bundle relative to the spectral parameter w(B >,Oand C 
are the Hermitian matrices) 

As = (@SK+ @Cr. z = fun v,,=% % ir, VI I*) (1.3) 

Following /2/, it is natural to introduce the space L of vector functions 

x : L = L* W) 83 L* v-1 te L* W) cf, L, (r) c9 L, (Q) 

t*i* sd= f ‘W’G + si%* + ‘O&Q + cp2 ,r tp;” irf df $ j ~i”p,*dQ 
1’ 

It can be shown that the operator A in (1.3) is symmetric and nonnegative in the sub- 

space of smooth vector functions. As is shown in /2/, the operator ‘A has a self-adjoint 

closure in the space L with a completely continuous resolvent, The discreteness of the 

spectrum of the self-adjoint bundle (1.3) follows from Theorem l-5.1 in /3/. 
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If q is an eigenvector corresponding to the eigenvalue (JI, then 

o,'(Bx,, so) + 00 (C%, xe) -(A% Ig) = 0 (1.4) 

holds. 
By virtue of self-adjointness, the bundles of coefficients of (1.4) are real. The value 

of * is real if (Bq,q)=O. Let (BsO,xO)#O, then that 4 is real follows frcm the fact 

the (A%,q)>O,(Bro,%)>O, i.e., the discriminant of (1.4) is positive. The last assertion of 
the theorem is verified directly. 

The system (1.3) depends regularly on the small parameter h. For h=O it separates in- 
to two unrelated problems. The first, corresponding to the first two equations in (1.2), is, 
in combination with the second and third boundary conditions (1.1) an eigenvalue problem for 
plane oscillations of the cylindrical shell and has a nonnegative discrete spectrum with a 
single limit point at infinity. The second problem has the form 

- iwpfE_1 cp lrl = 0, (acp/ an),= iow, Acp + O* c-'cp = 0 (1.5) 

'Pln=O 

At the point e=O the system (1.5) has an infinite proper subspace of vector functions 
of the form (w,O,O), where, 10 E J%(G) is an arbitrary function, and also the eigenfunction 
(0, 1.1). For o#O , the problem (1.5) is equivalent to the Dirichlet problem for the 

Helmholtz equation.- As will be shown below, the spectrum of the problem (l.l), (1.2) isclose- 
ly related to the spectrum of the problem mentioned and the problem (1.5), hence, the role of 
the point o=O is analogous totherole of a continuous spectrum in dry shells: it is the 
limit point for the eigennumbers of the problem (l.l), (1.2) as h-0. We shall later call 
the eigenvalue problem (l.l), (1.2) a manent problem. 

Remarks. lo. Zero is an eigenvalue of the moment problem, hence the eigenvectors equal 
(0~0, 0, i,i) =a (i,o, O,O, 0). 

2'. All the above is valid for an arbitrary closed shell filled completely with fluid. 

2. The substitution 

u = u (0) cos xa, u = v(o) ein xu, ID = w (8) sin WL, cp = cp(z. g) sin WL, x=knll 

(I is the cylinder length, ana =,r are orthogonal coordinates in the transverse section) re- 
duces the system (1.2) to the following system. 

(2.1) 
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We shall henceforth consider R(p) an infinitely differentiable function. 
Let us describe the method which can be used to reduce the problem (2.1) to a system of 

pseudodifferential equations on the contour r. Let T(i) denote a linear operator that sets 
the derivative in the direction of the external normal in correspondence with the boundary 
dalue of the solution of the Helmholtz equation. The operator T(k) can be represented in the 
following form (0 is the length of the cylinder directrix): 

T (Ic)= D+ Tl(b). D(e~p~)=$&,~ 
a&l 

Here T%(k) is an integral operator of order -1, whose kernel is a meromorphic function of ?. 
with poles at points of the spectrum of the problem 

Av+(cu'd- x9 Cp = 0, 0 Ir =o (2.3) 

A representation of the operator T(A) in the form (2.2) can be obtained by calculating 
its symbol (see /4/). This can be done, for instance, by using the explicit form of the fund- 
amental solution of the Helmholtz equation. Hence, the principal symbol of the operator T(I) 
turns out to equal I&l. If D denotes the operator with such a symbol, then it can easily 
be shown that the second relation in (2.2) holds for D. The meromorphicity of Tl(ll) as a 
function of L follows from the definition of the operator T(k). Let us note the operator 
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T,(A) is representable in the form 

T, (A) ffJ = T2 @) w + Iz fi (i-3 if*, 4 

L,EG 
hi - h 

!2*4i 

where hi is a pole of the kernel T,(i) in the domain G of the complex plane. The operator 
T, (9 is analytic in G, and fi(fi) are smooth functions on r. We express U,U in terms 
of UJ from the first two equations in (Z-l), and we substitute them into the third equation. 
We express UI in terms of olr from the last two equations in (2.1) by using the operator 
T(R) : w = (io)’ T (?k) cp. 

Taking account of (2.4), we then conclude that the system (2.1) is equivalent to the 
following equation: 

_g[_.+]” (D+T,(h))cp+hK(h)cp=h[h(DfT?+PE)I(pl P= (,_P&p, 
q 

(2.5) 

Here K (A) is an integral operator with kernel meromorphic in rZ, where K (A) can be 
selected in conformity with (2.4) so that the meromorphic part of K (V would be finite on 
the segment I- [&,,&,I, and the operator T,(b) is regular. 

The equation 

g+Dlp=h(hD+p.E)q (2.6) 

later plays a governing role. 
Let us consider th periodic problem for (2:6). Taking account of the second relation in 

(2.2), we see that (2.6) has a complete system of eigenfunctions exp(2nnifila) on T.Its double 
eigennumbers hence have the form 

&' = (ha I12) (2 I n In I a)” [h(2 ) II (x I a) + pj-’ (2.7) 

It can be seen that the following assertion results from (2.7). There exist constants E>O 
and h,>O such that for (2.8) 

the eigennumber distribution function +,(a) of the periodic problem for (2.6) has the form 

3. Let ol(h) and ua (a) be 
the periodic problem for plane 
generatrix. 

Theorem 2, The ends of a 

n, (1) =z 2 [F(a)] + I (2.9) 

eigennumber distribution functions of the problem (2.3) and 

oscillations of a cylindrical shell with k waves along the 

fixed segment I= [&,&I do not belong to the spectrum of the 
problems mentioned above. There exist constants e>O and ho>0 such that for O<h<h, 

and E<{F(&))<~ -e the formula 

R (b) - n (a,) = 2 F (h) - 2 F (ad + al (hr) - 9 (a,) + 0, (h) - (T? (a,) (3.1) 

is valid for the quantity of eigennumbers of the moment problem (2.5) on the segment 1. 

Proof. We assume that there are no eigennumbers of the problem (2.3) and the problem of 
with k waves along the generator in the segment I. Then (2.5) can be plane oscillations 

represented in the form 

K do x?Z.Dc,--l(hD I-pE)v-/~hJArp+h&=O 
(3.2) 

where the order of A is 3, the order of B is -1, and the operators A and B depend reg- 
ularly on 1 on the segment 1. We consider the rectangle II with sides parallel to the co- 

ordinate axes in a complex plane. Let the vertical sides pass through the points hl and &. 
Let us substitute # = (hD +pE)cp in (3.2). We obtain 

13 dl 
P$-Q+(hSA+hB)(hD+pE)-'$=O, P==nqgD(hD+pE)-l (3.3) 

Denoting the resolvent of the operator P by RI, we have an estimate for 
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~R@W+P~-‘~<~~P, BRA~t~-i-+~-1fCc,~p8 (3.4) 

which can be obtained by taking into account the explicit form of the eigennumbers (2.7) of 
equation (2.6). Integrating the resolvent of (3.3) along the contour II with (3.4) and the 
fact that the spectrum of the operator P agrees with the spectrum of (2.6) taken into acc- 
ount, we obtain (3.1). 

Now, let there be one, for simplicity, a simple pole ;1, of the operator TI on the seg- 
ment I, i.e., equation (2.5) has the following form for ImI 

(3.5) 

It can be shown that (3.5) is equivalent to the following integral equation with the mero- 
morphic kernel 

Cp + &I(S) Vr. (m -I- P V'Q# 1 fS -A) = 0 (3.6) 

The Fredholm determinant of (3.6) can be represented in the form 

(3.7) 

where AE:II,~(P) is the pole of R, on the segment I. Because of the smoothness of f(8) the 
scalar product (f,ftyi) decreases more rapidly than any power of c as t-0. Hence, from the 
principle of the argumant there results that in a sufficiently large rectangle the number of 
zeroes of (3.7) is one greater than the number of its poles h(P). Since the eigennumbers of 
(3.7) are real by virtue of Theorem 1, Theorem 2 is proved. 

Remark 3'. The ends of the segment I decrease as It--r 0 end behave as I&= (e <i). It. 
can be verified that Theorem 2 remains valid even in this case, where only the first two com- 
ponents remain in the right side of (3.2). Let A-&h. We represent (2.8) in the form 

(3.8) 

If we set h=O in (3.8), a degenerate equation is obtained 

K (0) tp = %Pgcp (3.9) 

that is equivalent to a Tnembrane" system of equations 

(3.10) 

where T-l is an integraf operator inverse to the operator (2.2). The spectrum of the system 
of equations (3.10) is discrete and is concentrated at xero. 

Let u*(&) denote the number of eigenvalues of the system (3.10) that are larger then &, 
As before, let uz(A) be the distribution function of the eigenvalues of the Dirichlet problem 
oftheHel.mholtz equation in a domain bounded by the contour r, and %(z.) is the distribu- 
tion function of the eigenvalues of the periodic problem for the equations of plane oscilla- 
tions with waves along the generator. 

We denote S as the ccebination of the spectra of these problems. 

Theorem 3, There exist constants e> 0 and ho>0 such that for 
1 - 8, b> Ah, diet&s) >s, 

O<h<b,, a <F(i)< 
where A>0 is any number, the distribution function of thenatural 

frequencies n(h) of the problem (2.1) has the form 

n(A) = 2 P(A) + f + 01 (A) + 4 0.) - 4 (111 h) (3.11) 

Let R& denote the resolvent of the periodic problem on I' for the equation 

,-g+P=hlpcp (3.12) 

Then the resolwnt R& of the analogous problem for (3.8) can be represented in the form 

i$o'=(B+ M?An(M + T(h)+ x,(M) + Rk R(0))-xRk (3.13) 
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It can be shown that 

if & satisfies the conditions of Theorem 3. In the complex h, plane we examine the clos- 
ed contour H passing through the point AZ on the positive real half-axis containing the 
segment [O,h] and satisfying the conditions of the theorem. Then on this contour 

Rt)= (E - &K (0) +o (+ R,, (3.14) 

We denote AL(') as the resolvent of (3.9). Using (3.14), we obtain that on the contour II 

(3.15) 

Integrating (3.15) over the contour H, we obtain (3.11) for the case h=X,&. 
formula (3.11) is obtained taking Theorem 2 and Remark 3O 

The complete 
into account. 

In conclusion, we note that rapidly varying eigen vector-functions correspondtothe first 
term in (3.11) in the gap between eigennumbers of the degenerate problem. Their components 
have the form 

w = exp ((F (V $) (1 -I- 0) (P))~ tp IF =* w ( iF fW +) (* + 0 (a)) 

~l,=~exP(LP(h)~-lII.(h)I~)(1CO(~))e(P) 

where p is the distance along the normal from the boundary of T and e(p) is the cutoff func- 

tion. 
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